3.164 \(\int \frac{(a+i a \tan (c+d x))^{3/2} (A+B \tan (c+d x))}{\tan ^{\frac{3}{2}}(c+d x)} \, dx\)

Optimal. Leaf size=146 \[ \frac{(2+2 i) a^{3/2} (A-i B) \tanh ^{-1}\left (\frac{(1+i) \sqrt{a} \sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right )}{d}+\frac{2 \sqrt [4]{-1} a^{3/2} B \tan ^{-1}\left (\frac{(-1)^{3/4} \sqrt{a} \sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right )}{d}-\frac{2 a A \sqrt{a+i a \tan (c+d x)}}{d \sqrt{\tan (c+d x)}} \]

[Out]

(2*(-1)^(1/4)*a^(3/2)*B*ArcTan[((-1)^(3/4)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]])/d + ((2 +
2*I)*a^(3/2)*(A - I*B)*ArcTanh[((1 + I)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]])/d - (2*a*A*Sq
rt[a + I*a*Tan[c + d*x]])/(d*Sqrt[Tan[c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.483096, antiderivative size = 146, normalized size of antiderivative = 1., number of steps used = 8, number of rules used = 8, integrand size = 38, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.21, Rules used = {3593, 3601, 3544, 205, 3599, 63, 217, 203} \[ \frac{(2+2 i) a^{3/2} (A-i B) \tanh ^{-1}\left (\frac{(1+i) \sqrt{a} \sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right )}{d}+\frac{2 \sqrt [4]{-1} a^{3/2} B \tan ^{-1}\left (\frac{(-1)^{3/4} \sqrt{a} \sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right )}{d}-\frac{2 a A \sqrt{a+i a \tan (c+d x)}}{d \sqrt{\tan (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Int[((a + I*a*Tan[c + d*x])^(3/2)*(A + B*Tan[c + d*x]))/Tan[c + d*x]^(3/2),x]

[Out]

(2*(-1)^(1/4)*a^(3/2)*B*ArcTan[((-1)^(3/4)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]])/d + ((2 +
2*I)*a^(3/2)*(A - I*B)*ArcTanh[((1 + I)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]])/d - (2*a*A*Sq
rt[a + I*a*Tan[c + d*x]])/(d*Sqrt[Tan[c + d*x]])

Rule 3593

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> -Simp[(a^2*(B*c - A*d)*(a + b*Tan[e + f*x])^(m - 1)*(c + d*Tan[e + f*x])^
(n + 1))/(d*f*(b*c + a*d)*(n + 1)), x] - Dist[a/(d*(b*c + a*d)*(n + 1)), Int[(a + b*Tan[e + f*x])^(m - 1)*(c +
 d*Tan[e + f*x])^(n + 1)*Simp[A*b*d*(m - n - 2) - B*(b*c*(m - 1) + a*d*(n + 1)) + (a*A*d*(m + n) - B*(a*c*(m -
 1) + b*d*(n + 1)))*Tan[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && EqQ
[a^2 + b^2, 0] && GtQ[m, 1] && LtQ[n, -1]

Rule 3601

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[(A*b + a*B)/b, Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n, x]
, x] - Dist[B/b, Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n*(a - b*Tan[e + f*x]), x], x] /; FreeQ[{a, b
, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[A*b + a*B, 0]

Rule 3544

Int[Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]]/Sqrt[(c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[
(-2*a*b)/f, Subst[Int[1/(a*c - b*d - 2*a^2*x^2), x], x, Sqrt[c + d*Tan[e + f*x]]/Sqrt[a + b*Tan[e + f*x]]], x]
 /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 3599

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[(b*B)/f, Subst[Int[(a + b*x)^(m - 1)*(c + d*x)^n, x], x, Tan[e + f*x
]], x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && EqQ[A*b + a*B,
 0]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{(a+i a \tan (c+d x))^{3/2} (A+B \tan (c+d x))}{\tan ^{\frac{3}{2}}(c+d x)} \, dx &=-\frac{2 a A \sqrt{a+i a \tan (c+d x)}}{d \sqrt{\tan (c+d x)}}+2 \int \frac{\sqrt{a+i a \tan (c+d x)} \left (\frac{1}{2} a (2 i A+B)+\frac{1}{2} i a B \tan (c+d x)\right )}{\sqrt{\tan (c+d x)}} \, dx\\ &=-\frac{2 a A \sqrt{a+i a \tan (c+d x)}}{d \sqrt{\tan (c+d x)}}-B \int \frac{(a-i a \tan (c+d x)) \sqrt{a+i a \tan (c+d x)}}{\sqrt{\tan (c+d x)}} \, dx+(2 a (i A+B)) \int \frac{\sqrt{a+i a \tan (c+d x)}}{\sqrt{\tan (c+d x)}} \, dx\\ &=-\frac{2 a A \sqrt{a+i a \tan (c+d x)}}{d \sqrt{\tan (c+d x)}}+\frac{\left (4 a^3 (A-i B)\right ) \operatorname{Subst}\left (\int \frac{1}{-i a-2 a^2 x^2} \, dx,x,\frac{\sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right )}{d}-\frac{\left (a^2 B\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{x} \sqrt{a+i a x}} \, dx,x,\tan (c+d x)\right )}{d}\\ &=\frac{(2+2 i) a^{3/2} (A-i B) \tanh ^{-1}\left (\frac{(1+i) \sqrt{a} \sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right )}{d}-\frac{2 a A \sqrt{a+i a \tan (c+d x)}}{d \sqrt{\tan (c+d x)}}-\frac{\left (2 a^2 B\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{a+i a x^2}} \, dx,x,\sqrt{\tan (c+d x)}\right )}{d}\\ &=\frac{(2+2 i) a^{3/2} (A-i B) \tanh ^{-1}\left (\frac{(1+i) \sqrt{a} \sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right )}{d}-\frac{2 a A \sqrt{a+i a \tan (c+d x)}}{d \sqrt{\tan (c+d x)}}-\frac{\left (2 a^2 B\right ) \operatorname{Subst}\left (\int \frac{1}{1-i a x^2} \, dx,x,\frac{\sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right )}{d}\\ &=\frac{2 \sqrt [4]{-1} a^{3/2} B \tan ^{-1}\left (\frac{(-1)^{3/4} \sqrt{a} \sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right )}{d}+\frac{(2+2 i) a^{3/2} (A-i B) \tanh ^{-1}\left (\frac{(1+i) \sqrt{a} \sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right )}{d}-\frac{2 a A \sqrt{a+i a \tan (c+d x)}}{d \sqrt{\tan (c+d x)}}\\ \end{align*}

Mathematica [A]  time = 3.89547, size = 234, normalized size = 1.6 \[ \frac{a e^{-\frac{1}{2} i (4 c+5 d x)} \left (1+e^{2 i (c+d x)}\right )^2 \sqrt{\frac{a e^{2 i (c+d x)}}{1+e^{2 i (c+d x)}}} \sqrt{\tan (c+d x)} \sec (c+d x) \left (\cos \left (\frac{d x}{2}\right )+i \sin \left (\frac{d x}{2}\right )\right ) \left (2 (B+i A) \tanh ^{-1}\left (\frac{e^{i (c+d x)}}{\sqrt{-1+e^{2 i (c+d x)}}}\right )-A \sqrt{-1+e^{2 i (c+d x)}} \csc (c+d x)-\sqrt{2} B \tanh ^{-1}\left (\frac{\sqrt{2} e^{i (c+d x)}}{\sqrt{-1+e^{2 i (c+d x)}}}\right )\right )}{\sqrt{2} d \sqrt{-1+e^{2 i (c+d x)}}} \]

Antiderivative was successfully verified.

[In]

Integrate[((a + I*a*Tan[c + d*x])^(3/2)*(A + B*Tan[c + d*x]))/Tan[c + d*x]^(3/2),x]

[Out]

(a*Sqrt[(a*E^((2*I)*(c + d*x)))/(1 + E^((2*I)*(c + d*x)))]*(1 + E^((2*I)*(c + d*x)))^2*(2*(I*A + B)*ArcTanh[E^
(I*(c + d*x))/Sqrt[-1 + E^((2*I)*(c + d*x))]] - Sqrt[2]*B*ArcTanh[(Sqrt[2]*E^(I*(c + d*x)))/Sqrt[-1 + E^((2*I)
*(c + d*x))]] - A*Sqrt[-1 + E^((2*I)*(c + d*x))]*Csc[c + d*x])*Sec[c + d*x]*(Cos[(d*x)/2] + I*Sin[(d*x)/2])*Sq
rt[Tan[c + d*x]])/(Sqrt[2]*d*E^((I/2)*(4*c + 5*d*x))*Sqrt[-1 + E^((2*I)*(c + d*x))])

________________________________________________________________________________________

Maple [B]  time = 0.046, size = 521, normalized size = 3.6 \begin{align*}{\frac{a}{2\,d}\sqrt{a \left ( 1+i\tan \left ( dx+c \right ) \right ) } \left ( 4\,iA\ln \left ({\frac{1}{2} \left ( 2\,ia\tan \left ( dx+c \right ) +2\,\sqrt{a\tan \left ( dx+c \right ) \left ( 1+i\tan \left ( dx+c \right ) \right ) }\sqrt{ia}+a \right ){\frac{1}{\sqrt{ia}}}} \right ) \sqrt{-ia}\tan \left ( dx+c \right ) a-i\sqrt{ia}\sqrt{2}\ln \left ( -{\frac{1}{\tan \left ( dx+c \right ) +i} \left ( -2\,\sqrt{2}\sqrt{-ia}\sqrt{a\tan \left ( dx+c \right ) \left ( 1+i\tan \left ( dx+c \right ) \right ) }+ia-3\,a\tan \left ( dx+c \right ) \right ) } \right ) \tan \left ( dx+c \right ) a+2\,B\ln \left ( 1/2\,{\frac{2\,ia\tan \left ( dx+c \right ) +2\,\sqrt{a\tan \left ( dx+c \right ) \left ( 1+i\tan \left ( dx+c \right ) \right ) }\sqrt{ia}+a}{\sqrt{ia}}} \right ) \sqrt{-ia}\tan \left ( dx+c \right ) a+2\,i\ln \left ({\frac{1}{2} \left ( 2\,ia\tan \left ( dx+c \right ) +2\,\sqrt{a\tan \left ( dx+c \right ) \left ( 1+i\tan \left ( dx+c \right ) \right ) }\sqrt{ia}+a \right ){\frac{1}{\sqrt{ia}}}} \right ) \sqrt{-ia}\tan \left ( dx+c \right ) a-\sqrt{ia}\sqrt{2}\ln \left ( -{\frac{1}{\tan \left ( dx+c \right ) +i} \left ( -2\,\sqrt{2}\sqrt{-ia}\sqrt{a\tan \left ( dx+c \right ) \left ( 1+i\tan \left ( dx+c \right ) \right ) }+ia-3\,a\tan \left ( dx+c \right ) \right ) } \right ) \tan \left ( dx+c \right ) a-4\,A\sqrt{a\tan \left ( dx+c \right ) \left ( 1+i\tan \left ( dx+c \right ) \right ) }\sqrt{-ia}\sqrt{ia}-2\,\ln \left ( 1/2\,{\frac{2\,ia\tan \left ( dx+c \right ) +2\,\sqrt{a\tan \left ( dx+c \right ) \left ( 1+i\tan \left ( dx+c \right ) \right ) }\sqrt{ia}+a}{\sqrt{ia}}} \right ) \sqrt{-ia}\tan \left ( dx+c \right ) a \right ){\frac{1}{\sqrt{\tan \left ( dx+c \right ) }}}{\frac{1}{\sqrt{ia}}}{\frac{1}{\sqrt{-ia}}}{\frac{1}{\sqrt{a\tan \left ( dx+c \right ) \left ( 1+i\tan \left ( dx+c \right ) \right ) }}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+I*a*tan(d*x+c))^(3/2)*(A+B*tan(d*x+c))/tan(d*x+c)^(3/2),x)

[Out]

1/2/d*(a*(1+I*tan(d*x+c)))^(1/2)*a*(4*I*A*ln(1/2*(2*I*a*tan(d*x+c)+2*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(I*
a)^(1/2)+a)/(I*a)^(1/2))*(-I*a)^(1/2)*tan(d*x+c)*a-I*(I*a)^(1/2)*2^(1/2)*ln(-(-2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d
*x+c)*(1+I*tan(d*x+c)))^(1/2)+I*a-3*a*tan(d*x+c))/(tan(d*x+c)+I))*tan(d*x+c)*a+2*B*ln(1/2*(2*I*a*tan(d*x+c)+2*
(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(I*a)^(1/2)+a)/(I*a)^(1/2))*(-I*a)^(1/2)*tan(d*x+c)*a+2*I*ln(1/2*(2*I*a*
tan(d*x+c)+2*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(I*a)^(1/2)+a)/(I*a)^(1/2))*(-I*a)^(1/2)*tan(d*x+c)*a-(I*a)
^(1/2)*2^(1/2)*ln(-(-2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)+I*a-3*a*tan(d*x+c))/(tan(d*x
+c)+I))*tan(d*x+c)*a-4*A*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(-I*a)^(1/2)*(I*a)^(1/2)-2*ln(1/2*(2*I*a*tan(d*
x+c)+2*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(I*a)^(1/2)+a)/(I*a)^(1/2))*(-I*a)^(1/2)*tan(d*x+c)*a)/tan(d*x+c)
^(1/2)/(I*a)^(1/2)/(-I*a)^(1/2)/(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)

________________________________________________________________________________________

Maxima [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(d*x+c))^(3/2)*(A+B*tan(d*x+c))/tan(d*x+c)^(3/2),x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

Fricas [B]  time = 1.85713, size = 2007, normalized size = 13.75 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(d*x+c))^(3/2)*(A+B*tan(d*x+c))/tan(d*x+c)^(3/2),x, algorithm="fricas")

[Out]

1/2*(sqrt(2)*(-4*I*A*a*e^(2*I*d*x + 2*I*c) - 4*I*A*a)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x +
2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1))*e^(I*d*x + I*c) + sqrt((8*I*A^2 + 16*A*B - 8*I*B^2)*a^3/d^2)*(d*e^(2*I*
d*x + 2*I*c) - d)*log((sqrt(2)*((2*I*A + 2*B)*a*e^(2*I*d*x + 2*I*c) + (2*I*A + 2*B)*a)*sqrt(a/(e^(2*I*d*x + 2*
I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1))*e^(I*d*x + I*c) + sqrt((8*I*A^2 + 16*A
*B - 8*I*B^2)*a^3/d^2)*d*e^(2*I*d*x + 2*I*c))*e^(-2*I*d*x - 2*I*c)/((2*I*A + 2*B)*a)) - sqrt((8*I*A^2 + 16*A*B
 - 8*I*B^2)*a^3/d^2)*(d*e^(2*I*d*x + 2*I*c) - d)*log((sqrt(2)*((2*I*A + 2*B)*a*e^(2*I*d*x + 2*I*c) + (2*I*A +
2*B)*a)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1))*e^(I*d*
x + I*c) - sqrt((8*I*A^2 + 16*A*B - 8*I*B^2)*a^3/d^2)*d*e^(2*I*d*x + 2*I*c))*e^(-2*I*d*x - 2*I*c)/((2*I*A + 2*
B)*a)) - sqrt(-4*I*B^2*a^3/d^2)*(d*e^(2*I*d*x + 2*I*c) - d)*log((sqrt(2)*(B*a*e^(2*I*d*x + 2*I*c) + B*a)*sqrt(
a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1))*e^(I*d*x + I*c) + sq
rt(-4*I*B^2*a^3/d^2)*d*e^(2*I*d*x + 2*I*c))*e^(-2*I*d*x - 2*I*c)/(B*a)) + sqrt(-4*I*B^2*a^3/d^2)*(d*e^(2*I*d*x
 + 2*I*c) - d)*log((sqrt(2)*(B*a*e^(2*I*d*x + 2*I*c) + B*a)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*
d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1))*e^(I*d*x + I*c) - sqrt(-4*I*B^2*a^3/d^2)*d*e^(2*I*d*x + 2*I*c))*e
^(-2*I*d*x - 2*I*c)/(B*a)))/(d*e^(2*I*d*x + 2*I*c) - d)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(d*x+c))**(3/2)*(A+B*tan(d*x+c))/tan(d*x+c)**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]  time = 1.53931, size = 236, normalized size = 1.62 \begin{align*} -\frac{\left (i - 1\right ) \, \sqrt{-2 \,{\left (i \, a \tan \left (d x + c\right ) + a\right )} a + 2 \, a^{2}}{\left (i \, a \tan \left (d x + c\right ) + a\right )}^{2} a^{3} +{\left (\left (2 i + 2\right ) \,{\left (i \, a \tan \left (d x + c\right ) + a\right )}^{2} a^{2} - \left (2 i + 2\right ) \,{\left (i \, a \tan \left (d x + c\right ) + a\right )} a^{3}\right )} \sqrt{-2 \,{\left (i \, a \tan \left (d x + c\right ) + a\right )} a + 2 \, a^{2}} \sqrt{i \, a \tan \left (d x + c\right ) + a} B}{2 \,{\left ({\left (i \, a \tan \left (d x + c\right ) + a\right )}^{3} a - 4 \,{\left (i \, a \tan \left (d x + c\right ) + a\right )}^{2} a^{2} + 5 \,{\left (i \, a \tan \left (d x + c\right ) + a\right )} a^{3} - 2 \, a^{4}\right )} d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(d*x+c))^(3/2)*(A+B*tan(d*x+c))/tan(d*x+c)^(3/2),x, algorithm="giac")

[Out]

-1/2*((I - 1)*sqrt(-2*(I*a*tan(d*x + c) + a)*a + 2*a^2)*(I*a*tan(d*x + c) + a)^2*a^3 + ((2*I + 2)*(I*a*tan(d*x
 + c) + a)^2*a^2 - (2*I + 2)*(I*a*tan(d*x + c) + a)*a^3)*sqrt(-2*(I*a*tan(d*x + c) + a)*a + 2*a^2)*sqrt(I*a*ta
n(d*x + c) + a)*B)/(((I*a*tan(d*x + c) + a)^3*a - 4*(I*a*tan(d*x + c) + a)^2*a^2 + 5*(I*a*tan(d*x + c) + a)*a^
3 - 2*a^4)*d)